Exercise 61

Find $f^{\prime}(x)$. Check that your answer is reasonable by comparing the graphs of f and f^{\prime}.

$$
f(x)=\sqrt{1-x^{2}} \arcsin x
$$

Solution

Use the product rule, the chain rule, and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d f}{d x} & =\frac{d}{d x}\left(\sqrt{1-x^{2}} \arcsin x\right) \\
& =\left(\frac{d}{d x} \sqrt{1-x^{2}}\right) \arcsin x+\sqrt{1-x^{2}}\left(\frac{d}{d x} \arcsin x\right) \\
& =\left[\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(1-x^{2}\right)\right] \arcsin x+\sqrt{1-x^{2}}\left(\frac{1}{\sqrt{1-x^{2}}}\right) \\
& =\left[\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x)\right] \arcsin x+1 \\
& =-\frac{x}{\sqrt{1-x^{2}}} \arcsin x+1
\end{aligned}
$$

